If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5g^2-7g-6=0
a = 5; b = -7; c = -6;
Δ = b2-4ac
Δ = -72-4·5·(-6)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-13}{2*5}=\frac{-6}{10} =-3/5 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+13}{2*5}=\frac{20}{10} =2 $
| 73=-1k+72 | | 4(x+5)-5=(8x+18)/2 | | 5(x-3)=2(2x-7) | | 2x+8=3x+11 | | 7n-9=-254 | | 5-1/5+-1=c | | 2(c+1)=1c-7 | | 69.6=8(m+2.3) | | 4q-5=-193 | | x2-18x-81=2526 | | 41/2+q=912 | | 4/x=66/5 | | 8(4x-6)+45=-227 | | 3a-2a=-36 | | 5/3-9/7x=1/12 | | 900=(x+25) | | 1/2x-3/5=1/5 | | (1.02)^4t=3 | | 10(2x+3)=5(2x+2) | | -4.8f=14.88 | | 3y=-5y2 | | 14x30x=-196 | | H=8x^2+20x+5 | | 19+1=5x-10 | | 60+45x=458 | | 5x-4(-x+40)=-115 | | 45+60x=458 | | 5a-5=21+3a | | 5x-4(-x=4)=-115 | | 97+45x=458 | | -4(3x+12)-14=170 | | 5x-4(-x=40)=-115 |